Analysis of SIR epidemic models with nonlinear incidence rate and treatment.

نویسندگان

  • Zhixing Hu
  • Wanbiao Ma
  • Shigui Ruan
چکیده

This paper deals with the nonlinear dynamics of a susceptible-infectious-recovered (SIR) epidemic model with nonlinear incidence rate, vertical transmission, vaccination for the newborns of susceptible and recovered individuals, and the capacity of treatment. It is assumed that the treatment rate is proportional to the number of infectives when it is below the capacity and constant when the number of infectives reaches the capacity. Under some conditions, it is shown that there exists a backward bifurcation from an endemic equilibrium, which implies that the disease-free equilibrium coexists with an endemic equilibrium. In such a case, reducing the basic reproduction number less than unity is not enough to control and eradicate the disease, extra measures are needed to ensure that the solutions approach the disease-free equilibrium. When the basic reproduction number is greater than unity, the model can have multiple endemic equilibria due to the effect of treatment, vaccination and other parameters. The existence and stability of the endemic equilibria of the model are analyzed and sufficient conditions on the existence and stability of a limit cycle are obtained. Numerical simulations are presented to illustrate the analytical results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of a Delayed Epidemic Model with Beddington-DeAngelis ‎Incidence Rate and a Constant Infectious Period

In this paper, an SIR epidemic model with an infectious period and a non-linear Beddington-DeAngelis type incidence rate function is considered. The dynamics of this model depend on the reproduction number R0. Accurately, if R0 < 1, we show the global asymptotic stability of the disease-free equilibrium by analyzing the corresponding characteristic equation and using compa...

متن کامل

Stability analysis of delayed SIR epidemic models with a class of nonlinear incidence rates

We analyze stability of equilibria for a delayed SIR epidemic model, in which population growth is subject to logistic growth in absence of disease, with a nonlinear incidence rate satisfying suitable monotonicity conditions. The model admits a unique endemic equilibrium if and only if the basic reproduction number R0 exceeds one, while the trivial equilibrium and the disease-free equilibrium a...

متن کامل

Existence and uniqueness of periodic solution for a discrete-time SIR epidemic model with time delays and impulses

In this paper, a discrete-time SIR epidemic model with nonlinear incidence rate, time delays and impulses is investigated. Sufficient conditions for the existence and uniqueness of periodic solutions are obtained by using contraction theorem and inequality techniques. An example is employed to illustrate our results. Keywords—Discrete-time SIR epidemic model, Time delay, Nonlinear incidence rat...

متن کامل

Stability Analysis and Optimal Control of Vaccination and Treatment of a SIR Epidemiological Deterministic Model with Relapse

In this paper, we studied and formulated the relapsed SIR model of a constant size population with standard incidence rate. Also, the optimal control problem with treatment and vaccination as controls, subject to the model is formulated. The analysis carried out on the model, clearly showed that the infection free steady state is globally asymptotically stable if the bas...

متن کامل

Dynamic Analysis of an Sir Epidemic Model with Nonlinear Incidence Rate and Double Delays

In this paper, an SIR epidemic model with nonlinear incidence rate and double delays due to the force of infection and temporary immunity period is investigated. The existence and stability of the possible equilibria are examined in terms of a certain threshold condition R0, the basic reproduction number. Based on some comparison arguments, sharp threshold conditions which are necessary for the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematical biosciences

دوره 238 1  شماره 

صفحات  -

تاریخ انتشار 2012